If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x^2+14x-9=0
a = 21; b = 14; c = -9;
Δ = b2-4ac
Δ = 142-4·21·(-9)
Δ = 952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{952}=\sqrt{4*238}=\sqrt{4}*\sqrt{238}=2\sqrt{238}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{238}}{2*21}=\frac{-14-2\sqrt{238}}{42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{238}}{2*21}=\frac{-14+2\sqrt{238}}{42} $
| (9x-6)=1 | | 4m+3=-3m+13.5 | | 3/5(4x-5)+(4+1/2)=1/4x-(9+1/4) | | (9x-6=1 | | 1/6n+7=-2n+20 | | -8c+2=8c-62 | | (x+5)^2-x=30 | | 7(5y-6)=+4(2y-3) | | X-4=5x+48 | | X+(24x+180)=180 | | p+p.40=23.745 | | p.40=23.745-p | | -6x+8=2x+(-4) | | y=1/3*(-3y)+4 | | 8(9x-7)=592 | | 19-(2x+3)=2(x+3)+x= | | 8x^2+22x-63=0 | | 2x+10=112 | | 19x-1=35x+1 | | -6x-2(-4x-5)=34 | | 2x+10+x-16=180 | | 88=6x-2(2x-34) | | −3/5^x=30 | | 19–(2x+3)=2(x+3)+x= | | -2=5n=4n+2 | | 4/3x-6=-3 | | 102=6x+3(x+13) | | 11x/9=x/4 | | (3x-6)^2=39 | | 3y-16=4(2y-4) | | x*(x-5)=104 | | -30=-4y+2(y-7) |